Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.29.486190

ABSTRACT

Exacerbated and persistent innate immune response marked by pro-inflammatory cytokine expression is thought to be a major driver of chronic COVID-19 pathology. Although macrophages are not the primary target cells of SARS-CoV-2 infection in humans, viral RNA and antigens in activated monocytes and macrophages have been detected in post-mortem samples, and dysfunctional monocytes and macrophages have been hypothesized to contribute to a protracted hyper-inflammatory state in COVID-19 patients. In this study, we demonstrate that CD169, a myeloid cell specific I-type lectin, facilitated ACE2-independent SARS-CoV-2 fusion and entry in macrophages. CD169-mediated SARS-CoV-2 entry in macrophages resulted in expression of viral genomic and sub-genomic (sg) RNAs with minimal viral protein expression and no infectious viral particle release, suggesting a post-entry restriction of the SARS-CoV-2 replication cycle. Intriguingly this post-entry replication block was alleviated by exogenous ACE2 expression in macrophages. Restricted expression of viral gRNA and sgRNA in CD169 + macrophages elicited a pro-inflammatory cytokine expression (TNF , IL-6 and IL-1 {beta}) in a RIG-I, MDA-5 and MAVS-dependent manner, which was suppressed by remdesivir pre-treatment. These findings suggest that de novo expression of SARS-CoV-2 RNA in macrophages contributes to the pro-inflammatory cytokine signature and that blocking CD169-mediated ACE2 independent infection and subsequent activation of macrophages by viral RNA might alleviate COVID-19-associated hyperinflammatory response.


Subject(s)
COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.29.462202

ABSTRACT

Infection by SARS-CoV2 provokes a potentially fatal pneumonia with multiorgan failure, and high systemic inflammation. To gain mechanistic insight and ferret out the root of this immune dysregulation, we modeled by in vitro co-culture the interactions between infected epithelial cells and immunocytes. A strong response was induced in monocytes and B cells, with a SARS-CoV2-specific inflammatory gene cluster distinct from that seen in influenza-A or Ebola virus-infected co-cultures, and which reproduced deviations reported in blood or lung myeloid cells from COVID-19 patients. A substantial fraction of the effect could be reproduced after individual transfection of several SARS-CoV2 proteins (Spike and some non-structural proteins), mediated by soluble factors, but not via transcriptional induction. This response was greatly muted in monocytes from healthy children, perhaps a clue to the age-dependency of COVID-19. These results suggest that the inflammatory malfunction in COVID-19 is rooted in the earliest perturbations that SARS-CoV2 induces in epithelia.


Subject(s)
Heart Failure , Pneumonia , Hemorrhagic Fever, Ebola , COVID-19 , Inflammation
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.06.451340

ABSTRACT

There is an urgent need to understand how SARS-CoV-2 infects the airway epithelium and in a subset of individuals leads to severe illness or death. Induced pluripotent stem cells (iPSCs) provide a near limitless supply of human cells that can be differentiated into cell types of interest, including airway epithelium, for disease modeling. We present a human iPSC-derived airway epithelial platform, composed of the major airway epithelial cell types, that is permissive to SARS-CoV-2 infection. Subsets of iPSC-airway cells express the SARS-CoV-2 entry factors ACE2 and TMPRSS2. Multiciliated cells are the primary initial target of SARS-CoV-2 infection. Upon infection with SARS-CoV-2, iPSC-airway cells generate robust interferon and inflammatory responses and treatment with remdesivir or camostat methylate causes a decrease in viral propagation and entry, respectively. In conclusion, iPSC-derived airway cells provide a physiologically relevant in vitro model system to interrogate the pathogenesis of, and develop treatment strategies for, COVID-19 pneumonia.


Subject(s)
Pneumonia , Severe Acute Respiratory Syndrome , Death , COVID-19
4.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3737106

ABSTRACT

SARS-CoV-2 infection leading to COVID-19 usually results in respiratory disease, but extrapulmonary manifestations are of major clinical interest. Intestinal symptoms of COVID-19 are present in a significant number of patients, and include nausea, diarrhea, and viral RNA shedding in feces. Human induced pluripotent stem cell (iPSC) derived intestinal organoids (HIOs) represent an inexhaustible cellular resource that could serve as a valuable tool to study SARS-CoV-2 as well as other enteric viruses that infect the intestinal epithelium. Here, we report that SARS-CoV-2 productively infects both proximally and distally patterned HIOs, leading to the release of infectious viral particles while stimulating a robust transcriptomic response, including a significant upregulation of interferon-related genes that appeared to be conserved across multiple epithelial cell types. These findings illuminate a potential inflammatory epithelial-specific signature that may contribute to both the multisystemic nature of COVID-19 as well as its highly variable clinical presentation.Funding: This work was supported by Evergrande MassCPR and Fast Grants awards to EM. AM is supported by the Kilachand Multicellular Design Program at Boston University. GM is supported by NIH Grants N0175N92020C00005 and 1R01DA051889-01.Conflict of Interest: The authors declare no competing interests.


Subject(s)
COVID-19 , Diarrhea
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.05.238394

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has created an urgent need for therapeutics that inhibit the SARS-CoV-2 virus and suppress the fulminant inflammation characteristic of advanced illness. Here, we describe the anti-COVID-19 potential of PTC299, an orally available compound that is a potent inhibitor of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme of the de novo pyrimidine biosynthesis pathway. In tissue culture, PTC299 manifests robust, dose-dependent, and DHODH-dependent inhibition of SARS CoV-2 replication (EC50 range, 2.0 to 31.6 nM) with a selectivity index >3,800. PTC299 also blocked replication of other RNA viruses, including Ebola virus. Consistent with known DHODH requirements for immunomodulatory cytokine production, PTC299 inhibited the production of interleukin (IL)-6, IL-17A (also called IL-17), IL-17F, and vascular endothelial growth factor (VEGF) in tissue culture models. The combination of anti-SARS-CoV-2 activity, cytokine inhibitory activity, and previously established favorable pharmacokinetic and human safety profiles render PTC299 a promising therapeutic for COVID-19.


Subject(s)
COVID-19 , Inflammation
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.30.175695

ABSTRACT

ABSTRACTThe most severe and fatal infections with SARS-CoV-2 result in the acute respiratory distress syndrome, a clinical phenotype of coronavirus disease 2019 (COVID-19) that is associated with virions targeting the epithelium of the distal lung, particularly the facultative progenitors of this tissue, alveolar epithelial type 2 cells (AT2s). Little is known about the initial responses of human lung alveoli to SARS-CoV-2 infection due in part to inability to access these cells from patients, particularly at early stages of disease. Here we present an in vitro human model that simulates the initial apical infection of the distal lung epithelium with SARS-CoV-2, using AT2s that have been adapted to air-liquid interface culture after their derivation from induced pluripotent stem cells (iAT2s). We find that SARS-CoV-2 induces a rapid global transcriptomic change in infected iAT2s characterized by a shift to an inflammatory phenotype predominated by the secretion of cytokines encoded by NF-kB target genes, delayed epithelial interferon responses, and rapid loss of the mature lung alveolar epithelial program. Over time, infected iAT2s exhibit cellular toxicity that can result in the death of these key alveolar facultative progenitors, as is observed in vivo in COVID-19 lung autopsies. Importantly, drug testing using iAT2s confirmed the efficacy of TMPRSS2 protease inhibition, validating putative mechanisms used for viral entry in human alveolar cells. Our model system reveals the cell-intrinsic responses of a key lung target cell to infection, providing a platform for further drug development and facilitating a deeper understanding of COVID-19 pathogenesis.Competing Interest StatementThe authors have declared no competing interest.View Full Text


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar , Respiratory Distress Syndrome , Drug-Related Side Effects and Adverse Reactions , COVID-19
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.22.165803

ABSTRACT

The spike protein (S) of SARS-CoV-2 mediates entry into human cells by interacting with human angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain (RBD). Here, we report identification of CD209L/L-SIGN and a related protein, CD209/DSIGN as alternative receptors capable of mediating SARS-CoV-2 entry into human cells. Immunofluorescence staining of human tissues revealed a prominent expression of CD209L in the lung and kidney epithelial and endothelial cells of small and medium-sized vessels, whereas CD209 was detected only in a limited number of cell types. Biochemical assays revealed that ectopically expressed CD209L and CD209 bind to S-RBD and mediate SARS-CoV-2 S-pseudotyped virus entry. Furthermore, we demonstrate that human endothelial cells endogenously express CD209L and are permissive to SARS-CoV-2 infection. Soluble CD209L-Fc neutralized virus entry. Our observations show that CD209L and CD209 serve as alternative receptors for SARS-CoV-2 in disease-relevant cell types, including the vascular system. This may have implications for antiviral drug development.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL